教授、博士、博士生导师
主要研究方向:流体力学中的偏微分方程理论,包括解的适定性问题,渐近极限问题等。最近的研究兴趣为流体自由边值问题,低马赫数极限及相关的奇异极限问题。
办公室:数学楼220 82507081&ou@ruc.edu.cn2004.8-2008.7 香港中文大学数学科学研究所,博士
2001.9-2004.6 中山大学数学与计算科学学院,硕士
1997.9-2001.6 中山大学数学与计算科学学院,本科
2018.6-至今 腾博tengbo988官网
2013.2- 2018.6中国人民大学信息学院
2010.9-2011.9 西班牙巴斯克应用数学中心,博士后
2010.7-2013.1 电子科技大学数学科学学院
2008.9-2010.7 北京应用物理与计算数学研究所,博士后
主持国家自然科学基金项目多项,教育部“新世纪优秀人才支持计划”项目一项,中国博士后基金特别资助项目一项、中国博士后基金面上项目一项;参与国家自然科学基金重点项目一项、国家自然科学基金国际合作交流项目一项。在J. Math, Pure. Appl.,SIAM J. Math. Anal.,ANIHP. - Anal. non lineaire, J. Differential Equations, Z. Angew. Math. Phys.等著名国际期刊发表学术论文20多篇。
论文代表作:
☆ Yaobin Ou, Low Mach and low Froude number limit for vacuum free boundary problem of all-time classical solutions of one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal. 53 (2021), no. 3, 3265–3305.
☆ Yaobin Ou, Lu Yang, Incompressible limit of non-isentropic compressible magnetohydrodynamic equations with zero magnetic diffusivity in bounded domains. Nonlinear Anal. Real World Appl. 49 (2019), 1–23.
☆ Yaobin Ou, Pan Shi, Peter Wittwer, Large time behaviors of strong solutions to magnetohydrodynamic equations with free boundary and degenerate viscosity. J. Math. Phys. 59 (2018), no. 8, 081510, 34 pp.
☆ Yaobin Ou, Global classical solutions to the 1-D vacuum free boundary problem for full compressible Navier-Stokes equations with large data. J. Math. Phys. 58 (2017), no. 1, 011502, 21 pp.
☆ Dandan Ren, Yaobin Ou*, Incompressible limit of all-time solutions to 3-D full Navier-Stokes equations for perfect gas with well-prepared initial condition. Z. Angew. Math. Phys. 67 (2016), no. 4, Art. 103, 27 pp.
☆ Dandan Ren, Yaobin Ou, Incompressible limit and stability of all-time solutions to 3-D full Navier-Stokes equations for perfect gases. Sci. China Math. 59 (2016), no. 7, 1395–1416. ☆ Changsheng Dou, Song Jiang, Yaobin Ou*, Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, Journal of Differential Equations,258 (2015) 379–398.
☆ Yaobin Ou, Huihui Zeng, Global strong solutions to the vacuum free boundary problem for compressible Navier–Stokes equations with degenerate viscosity and gravity force. Journal of Differential Equations 259 (2015) 6803–6829.
☆ Yaobin Ou, Peicheng Zhu. The Vanishing viscosity method for the sensitivity analysis of an optimal control problem of conservation laws in the presence of shocks, Nonlinear Analysis: Real World Applications,14 (2013), 1947-1974.
☆ Song Jiang and Yaobin Ou. Incompressible limit of the non-isentropic Navier–Stokes equations with well-prepared initial data in three-dimensional bounded domains, Journal de Mathématiques Pures et Appliquées, 96 (2011), 1-28
☆ Yaobin Ou and Peicheng Zhu. Spherically symmetric solutions to a model for phase transitions driven by configurational forces, Journal of Mathematical Physics, 52 (2011), Issue 9, 093708.
☆ Yaobin Ou. Low Mach limit of viscous polytropic fluid flows, Journal of Differential Equations, 251 (2011), 2037-2065.
☆ J. Fan, S. Jiang, Y. Ou*, A blow-up criterion for compressible viscous heat-conductive flows, ANIHP. - Anal. non lineaire 27 (2010) 337-350.
☆ Yaobin Ou. Incompressible limits of the Navier-Stokes equations for all time. J. Differential Equations, 247 (2009), 3295-3314
☆ Yaobin Ou. Low Mach number limit for the non-isentropic Navier-Stokes equations, J. Differential Equations, 246 (2009), 4441-4465.
北京市普通高校优秀毕业设计(论文)优秀指导教师(2020)
中国人民大学优秀本科毕业论文(设计)优秀指导教师(2020)
中国人民大学杰出学者青年学者A岗(2017)
教育部“新世纪优秀人才支持计划”(2012)
电子科技大学“百人计划”(2011)