报告人:宋亮教授(中山大学)
报告时间:2021年4月30日周五上午10:00-11:00
报告地点:腾讯会议ID:272 887 416
报告题目:The characterization of Hardy space for Fourier integral operators and some application
报告摘要:In this talk, we will concern the Hardy spaces for Fourier integral operators $\mathcal{H}_{FIO}^{p}(\mathbb{R}^{n})$, for $1\leq p\leq \infty$, which were introduced by Smith in 1998 and Hassell et al. in 2018. We give several equivalent characterizations of $\mathcal{H}_{FIO}^{1}(\mathbb{R}^{n})$, for example in terms of Littlewood--Paley g functions and maximal functions. We also give some applications of the characterizations. This is a joint work with Zhijie Fan, Naijia Liu and Rozendaal.
专家简介:宋亮, 中山大学教授。主要从事与微分算子相联系调和分析理论及偏微分方程均匀化理论方面的理论研究。1997-2001年中山大学学士;2001-2006年中山大学博士。多项学术成果发表于Adv. Math., J. Funct. Anal., ARMA等国际知名数学期刊。2016年入选国家自然科学基金优秀青年基金项目。