腾博tengbo988官网(中国)有限公司

08-04-2021

调和分析学术报告—Global gradient estimates for Dirichlet problems of elliptic operators with a BMO anti-symmetric part on non-smooth domains-杨四辈教授

报告人:杨四辈教授(兰州大学)

报告时间:2021年4月12日周一下午3:00-4:00

报告地点:腾讯会议ID:543 8265 5387

报告题目:Global gradient estimates for Dirichlet problems of elliptic operators

with a BMO anti-symmetric part on non-smooth domains

报告摘要: Let $n\ge2$ and $\Omega\subset\mathbb{R}^n$ be a bounded NTA domain. In this talk, we introduce (weighted) global gradient estimates for Dirichlet boundary value problems of second order elliptic equations of divergence form with an elliptic symmetric part and a BMO anti-symmetric part in $\Omega$. More precisely, for any given $p\in(2,\infty)$, we show that a weak reverse H\"older inequality with exponent $p$ implies the global $W^{1,p}$ estimate and the global weighted $W^{1,q}$ estimate, with $q\in[2,p]$ and some Muckenhoupt weights, of solutions to Dirichlet boundary value problems. As applications, we give some global gradient estimates for solutions to Dirichlet boundary value problems of second order elliptic equations of divergence form with small $\mathrm{BMO}$ symmetric part and small $\mathrm{BMO}$ anti-symmetric part, respectively, on bounded Lipschitz domains, quasi-convex domains, Reifenberg flat domains, $C^1$ domains, or (semi-)convex domains, in weighted Lebesgue spaces. Furthermore, as further applications, we obtain the global gradient estimate, respectively, in (weighted) Lorentz spaces, (Lorentz--)Morrey spaces, (Musielak--)Orlicz spaces, and variable Lebesgue spaces. This talk is based on the joint work with Profs. Dachun Yang and Wen Yuan.

分享

学院办公室:010-82507161

本科生教务:010-62513386

研究生教务与国际交流:010-82507161

党团学办公室:010-62515886

在职课程培训班:010-82507075

 

邮编:100872

电话:010-82507161

传真:010-62513316

E-mail:mathruc@ruc.edu.cn/mathrucdw@ruc.edu.cn

地址:北京市海淀区中关村大街59号中国人民大学数学楼

腾博tengbo988官网公众号

版权所有 腾博tengbo988官网 升星提供技术服务
XML 地图